ASPECT

AUTONOMOUS SITE PREPARATION: EXCAVATION, COMPACTION, AND TESTING

LSIC Excavation & Construction Meeting May 31, 2023

Chris Dreyer, PI, Colorado School of Mines cdreyer@mines.edu

Team

Chris Dreyer – PI, Regolith Mechanics Andrew Petruska – State Estimation Neil Dantam – Autonomy and Planning Jamal Rostami – Regolith Manipulation Kevin Cannon – Simulated Lunar Surface George Sowers – Infusion

NASA Glenn Research Center Phil Abel – NASA Technical Officer

Paul van Susante – Compaction

AJ Gemer – Mobility Platform Justin Cyrus and Joe Kendrick

Ann Esbeck – Terrestrial Experience

ASPECT - AUTONOMOUS SITE PREPARATION: EXCAVATION, COMPACTION, AND TESTING

Project Summary

Develop a push-button autonomous real-time task-to-motion planning vehicle capable of preparing a lunar surface for landing pad construction. Testing and verify performance in a 10 m diameter testbed with an 83 kg vehicle which represents a 500 kg vehicle on the Moon. Tasks are to compact the surface to 90% relative density, move rocks, grade, and fill craters.

Anticipated Outcomes

- Demonstration of site preparation in a lunar relevant test environment.
- Demonstration of sustained autonomous task and motion planning.
- Site preparation time per area.
- Infusion plan to put the ASPECT solution on a path to flight.

LuSTR Requirements

- Terrestrial rover mass to be ≤ 83 kg.
 - 1g reaction forces = reaction forces of 500 kg rover on the Moon
- Demonstrate site preparation of a 10m diameter and up to 1m deep simulated lunar surface
 - LuSTR prescribes the start and end states:
 - Starting state: # of and size of craters, # and size of rocks, slope to be leveled
 - End state: over the 10 m dia. level to <1°, <1 cm RMS, 90% relative density.

The LuSTR21 solicitation specified several system and test requirements

Inherent challenges of site preparation on the Moon ...and solutions we are investigating

- Low lunar gravity reduces available reaction mass
 - Minimize regolith movement
 - Carefully manage cutting and traction forces
 - Move only loose, low density, regolith
- Autonomy is necessary
 - -Site preparation occurs before human arrival
 - Not to use teleoperation
 - -Anticipate a series of individual steps

ASPECT LuSTR Testbed

- In Earth Mechanics Institute on campus
- Area > 100 m²
- Dust enclosure and mitigation
- Simulant: variant of CSM-LHT-1, based on Greenspar anorthosite
- Rocks: pumice for low mass simulation

Estimation and Execution Integration

Assess site preparedness Motion Feasibility Constraints **Finite Horizon** Current Motion Plan Site Map Task Plan No Motion Control & Survey Task Planning Prepared? Planning Estimation Local Replanning Yes **Task Categories** Compact Charge Move Regolith Move Rocks Smooth Finish · fill craters · craters · Traverse to · remove from site · finishing step • move to/from site · shallow surface charging station

Visual SLAM for Rover Navigation

- Navigation challenges on moon
 - No existing navigation infrastructure
 - Regolith and lower gravity cause wheel slip
- Visual SLAM
 - Perception: Leverage distinct rocks as static lunar landmarks
 - Use color segmentation in RGB image to identify rocks
 - Use depth measurement to compute 3D position of rocks
 - State estimation: Get pose of rover and rocks concurrently using EKS (Extended Kalman Smoother)
 - Estimate and compensate for rover wheel slip using slip dynamics model

MINES_EDU

Visual SLAM for Rover Navigation

- Navigation test setup
 - Teleoperated Clearpath Husky rover with Intel RealSense L515 Lidar sensor
 - Regolith simulant chamber with rocks
- State estimation test
 - Fixed ArUco tags used as ground-truth for known trajectory
 - Successfully recovered trajectory and estimate rock landmark positions using visual SLAM
- Future work
 - Autonomous navigation using visual SLAM.
 Implement rock detection measurement model into estimation framework

Student and Husky in regolith testbed

L515 Lidar rock image

A Task and Motion Planning Approach

Task Planning

- What are the high-level actions or steps?
- Approaches: search, constraintsatisfaction.

Motion Planning

- What are the paths to execute each task action?
- Approaches: search, sampling, optimization

Task Planning

Developing a visualization to verify planning

Actual surface map will be imported into the visualizer and planner

Vehicle Chassis and Mobility Platform

Frame/Structure Subsystem

- Load bearing frame
- Electronics Box enclosure
- Outer Body Enclosure
- Light weighting using carbon fiber

Mobility Subsystem

- Drivetrains x 4
 - Motors, gearboxes, driveshafts

Payloads Mounts

• Structural mounting points at either end

Regolith Manipulation Tools

- One bucket does it all
 - Base principle: only move loose regolith
 - Multi-purpose bucket regolith manipulation, grading, and rock removal that minimizes forces through vibration
 - Articulate the bucket to
 - Push regolith and rock Blade vertical, forward drive
 - Lift regolith and rock Blade low, forward drive and lift
 - Smooth Blade low, rearward drive
 - Rip Blade negative rotation, rearward drive
- Bucket and wheels designed together
 - Careful management of cutting/traction forces

Dozer Blade Testing

Results are generally in agreement with Balovnev Blade analysis.

Cutting force vs. time for five sequential cuts with cut depth from 3 to 8 mm. Each cut covered a distance of 80 cm.

Rock Pushing

Pushing force for each of the rocks tested, with rock masses of 318 g, 2.29 kg, and 3.65 lg.

Pumice rock, approx. 0.8 g/cc density

Tests show that pushing force is < 40 N for even largest rock (30cm)

Wheel Testing

- Wheel test rig designed to characterize drawbar pull and slippage
- 4-bar linkage allows vertical compliance
- Drawbar pull testing
- 68N/wheel w/ 20.75 kg load/wheel at 14.4% slip, 5 cm/s
- Good agreement with terramechanics model (Bekker)

With baseline wheel, a 4-wheel vehicle can pull 272 N, which exceeds maximum bucket loading

Compaction - Concept

The proposed compaction mechanism showing downward pressure plate and vibratory needles (left), showing one vibratory needle in its downward position (center) and after completing compaction (right)

- 90% relative density naturally reached between 20-37 cm depth.
- Need to compact top 20-30 cm estimated pressure 100 kPa
 - -Based on compressibility measurements of lunar samples at 90% rel. den.

Lunar Source Book bulk density with depth derived relationship from Apollo core data

Compaction Development

Multi-pin and single pin testing

LuSTR Compactor Design

Lunar Infusion Compactor Design

Compaction development progression

Testing Single Pin in Cylinders

Infusion

- Human lander scale site preparation
- Size up to 100 m diameter landing pad
- Support and ancillary equipment
- Path to flight

Thank you!

Questions?

Chris Dreyer cdreyer@mines.edu

